Homotopy groups of infinite wedge - TEST UPLOAD ONLY NOT FOR INDEXING
Keywords:
MR3818537, Zbl 1426.55015, MSC2020: 55Q20 Homotopy groups of wedges, joins, and simple spaces, MSC2020: 55Q52 Homotopy groups of special spaces, Homotopy group, Infinite wedge, MSC2010: 14F35Abstract
In {\it Homotopy Theory} (Pure and Applied Mathematics, Vol. VIII, Academic Press, New York--London, 1959), Sze-tsen Hu proved for $X\vee Y$, the wedge sum of pointed spaces $(X,x_0)$, and $(Y,y_0)$ that for $n\geq 2$ there is an isomorphism
\begin{equation}\label{e1}
\pi_n(X\vee Y,u_0)\approx \pi_n(X,x_0)\oplus \pi_n(Y,y_0)\oplus \pi_{n+1}(X\times Y,X\vee
Y, u_0),
\end{equation}
where $u_0=(x_0,y_0)$.
This result was not generalized for an infinite wedge $\vee Y_\om$,\, $\om\in \Om$, of pointed spaces $(Y_\om, y_\om^0)$ in view of the fact that an infinite wedge $\vee Y_\om$ is not a subspace of the direct product $\prod Y_\om$, $\om\in \Om$.
In the present work we prove that for $n\geq 2$ there is an isomorphism
$$
\pi_n(\vee Y_\om, y^0)\approx \sum_{\om\in \Om} \pi_n(Y_\om, y_\om^0)\oplus \pi_{n+1}(L Y_\om, \vee Y_\om, y^0),
$$
where $L Y_\om$ is the weak product of pointed topological spaces $(Y_\om, y_\om^0)$, $\om\in \Om$ (see %\cite{3}.
C. J. Knight, {\it Weak products of spaces and complexes}, Fund. Math. {\bf 53} (1963), 1--12.)
Downloads
Metrics
References
Marcelo Aguilar, Samuel Gitler, and Carlos Prieto, Algebraic Topology from a Homotopical Viewpoint. Translated from the Spanish by Stephen Bruce Sontz. Universitext. New York: Springer-Verlag, 2002. · Zbl 1006.55001
Sze-tsen Hu, Homotopy Theory. Pure and Applied Mathematics, Vol. VIII Academic Press, New York-London 1959 · Zbl 0088.38803
C. J. Knight, Weak products of spaces and complexes, Fund. Math. 53 (1963), 1-12. · Zbl 0115.17102
Edwin H. Spanier, Algebraic Topology. Corrected reprint of the 1966 original. New York: Springer-Verlag, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Topology Proceedings

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
These are the license terms for the submission.